Teaching material Introducing programming environment & Exercises

MISCE project

Mechatronics for Improving and Standardizing Competences in Engineering

Competence: Computer programming

Workgroup: University de Castilla-La Mancha

University of Žilina

This document corresponds to the first exercises of 'Computer programming' competence: 'Introducing programming environment & exercises'

Version: 1.0

Date: September 4th, 2024

Visit https://misceproject.eu/ for more information.

Index of contents

1	Insta	alling programming environment	. 9
	1.1	Python	. 9
	1.2	C/C++ (with GCC or MinGW)	. 9
	1.3	Java	. 9
	1.4	Matlab	10
2	Exe	rcises	11
	2.1	Exercise 1	11
	2.2	Exercise 2	11
	2.3	Exercise 3	11
	2.4	Exercise 4.	11
	2.5	Exercise 5	11
	2.6	Exercise 6	11
	2.7	Exercise 7	11
	2.8	Exercise 8	11
	2.9	Exercise 9	11
	2.10	Exercise 10	11
	2.11	Exercise 11	11
	2.12	Exercise 12	11
	2.13	Exercise 13	11
	2.14	Exercise 14	12
	2.15	Exercise 15	12
	2.16	Exercise 16	12
	2.17	Exercise 17	12
	2.18	Exercise 18	12
	2.19	Exercise 19	12
	2.20	Exercise 20	12
	2.21	Exercise 21	12
	2.22	Exercise 22	12
	2.23	Exercise 23	12
	2.24	Exercise 24	12
	2.25	Exercise 25	12
	2.26	Exercise 26	12
	2.27	Exercise 27	12
	2.28	Exercise 28	
	2.29	Exercise 29	

2.30	Exercise 30	. 13
2.31	Exercise 31	. 13
2.32	Exercise 32	. 13
2.33	Exercise 33	. 13
2.34	Exercise 34	. 13
2.35	Exercise 35	. 13
2.36	Exercise 36	. 13
2.37	Exercise 37	. 13
2.38	Exercise 38	. 13
2.39	Exercise 39	. 13
2.40	Exercise 40	. 13
2.41	Exercise 41	. 13
2.42	Exercise 42	. 13
2.43	Exercise 43	. 13
2.44	Exercise 44	. 14
2.45	Exercise 45	. 14
2.46	Exercise 46	. 14
2.47	Exercise 47	. 14
2.48	Exercise 48	. 14
2.49	Exercise 49	. 14
2.50	Exercise 50	. 14
2.51	Exercise 51	. 14
2.52	Exercise 52	. 14
2.53	Exercise 53	. 14
2.54	Exercise 54	. 14
2.55	Exercise 55	. 14
2.56	Exercise 56	. 14
2.57	Exercise 57	. 14
2.58	Exercise 58	. 14
2.59	Exercise 59	. 15
2.60	Exercise 60	. 15
2.61	Exercise 61	. 15
2.62	Exercise 62	. 15
2.63	Exercise 63	. 15
2.64	Exercise 64	. 15
2.65	Exercise 65	. 15
2.66	Exercise 66	. 15

2.67	Exercise 67	15
2.68	Exercise 68	15
2.69	Exercise 69	15
2.70	Exercise 70	15
2.71	Exercise 71	15
2.72	Exercise 72	15
2.73	Exercise 73	16
2.74	Exercise 74	16
2.75	Exercise 75	16
2.76	Exercise 76	16
2.77	Exercise 77	16
2.78	Exercise 78	16
2.79	Exercise 79	16
2.80	Exercise 80	16
2.81	Exercise 81	16
2.82	Exercise 82	16
2.83	Exercise 83	16
2.84	Exercise 84	16
2.85	Exercise 85	16
2.86	Exercise 86	16
2.87	Exercise 87	16
2.88	Exercise 88	17
2.89	Exercise 89	17
2.90	Exercise 90	17
2.91	Exercise 91	17
2.92	Exercise 92	17
2.93	Exercise 93	17
2.94	Exercise 94	17
2.95	Exercise 95	17
2.96	Exercise 96	17
2.97	Exercise 97	17
2.98	Exercise 98	17
2.99	Exercise 99	17
2.100	Exercise 100	17
2.101	Exercise 101	17
2.102	Exercise 102	17
2.103	Exercise 103	18

2.104	Exercise 104	18
2.105	Exercise 105	18
2.106	Exercise 106	18
2.107	Exercise 107	18
2.108	Exercise 108	18
2.109	Exercise 109	18
2.110	Exercise 110	18
2.111	Exercise 111	18
2.112	Exercise 112	18
2.113	Exercise 113	18
2.114	Exercise 114	18
2.115	Exercise 115	18
2.116	Exercise 116	18
2.117	Exercise 117	18
2.118	Exercise 118	19
2.119	Exercise 119	19
2.120	Exercise 120	19
2.121	Exercise 121	19
2.122	Exercise 122	19
2.123	Exercise 123	19
2.124	Exercise 124.	19
2.125	Exercise 125	19
2.126	Exercise 126	19
2.127	Exercise 127	19
2.128	Exercise 128	19
2.129	Exercise 129	19
2.130	Exercise 130	19
2.131	Exercise 131	19
2.132	Exercise 132	19
2.133	Exercise 133	20
2.134	Exercise 134	20
2.135	Exercise 135	20
2.136	Exercise 136	20
2.137	Exercise 137	20
2.138	Exercise 138	20
2.139	Exercise 139	20
2.140	Exercise 140	20

2.141	Exercise 141	20
2.142	Exercise 142	20
2.143	Exercise 143	20
2.144	Exercise 144	20
2.145	Exercise 145	20
2.146	Exercise 146	20
2.147	Exercise 147	20
2.148	Exercise 148	21
2.149	Exercise 149	21
2.150	Exercise 150	21
2.151	Exercise 151	21
2.152	Exercise 152	21
2.153	Exercise 153	21
2.154	Exercise 154	21
2.155	Exercise 155	21
2.156	Exercise 156	21
2.157	Exercise 157	21
2.158	Exercise 158	21
2.159	Exercise 159	21
2.160	Exercise 160	21
2.161	Exercise 161	21
2.162	Exercise 162	21
2.163	Exercise 163	22
2.164	Exercise 164	22
2.165	Exercise 165	22
2.166	Exercise 166	22
2.167	Exercise 167	22
2.168	Exercise 168	22
2.169	Exercise 169	22
2.170	Exercise 170	22
2.171	Exercise 171	22
2.172	Exercise 172	22
2.173	Exercise 173	22
2.174	Exercise 174	22
2.175	Exercise 175	22
2.176	Exercise 176	22
2.177	Exercise 177	22

2.178	Exercise 178	23
2.179	Exercise 179	23
2.180	Exercise 180	23
2.181	Exercise 181	23
2.182	Exercise 182	23
2.183	Exercise 183	23
2.184	Exercise 184	23
2.185	Exercise 185	23
2.186	Exercise 186	23
2.187	Exercise 187	23
2.188	Exercise 188	23
2.189	Exercise 189	23
2.190	Exercise 190	23
2.191	Exercise 191	23
2.192	Exercise 192	23
2.193	Exercise 193	24
2.194	Exercise 194	24
2.195	Exercise 195	24
2.196	Exercise 196	24
2.197	Exercise 197	24
2.198	Exercise 198	24
2.199	Exercise 199	24
2.200	Exercise 200	24
2.201	Exercise 201	24
2.202	Exercise 202	24
2.203	Exercise 203	24
2.204	Exercise 204	24
2.205	Exercise 205	24
2.206	Exercise 206	24
2.207	Exercise 207	24
2.208	Exercise 208	25
2.209	Exercise 209	25
2.210	Exercise 210	25
2.211	Exercise 211	25
2.212	Exercise 212	25
2.213	Exercise 213	25
2.214	Exercise 214	25

2.215	Exercise 215	25
2.216	Exercise 216	25
2.217	Exercise 217	25
2.218	Exercise 218	25
2.219	Exercise 219	25
2.220	Exercise 220	25
2.221	Exercise 221	25
2.222	Exercise 222	25
2.223	Exercise 223	26
2.224	Exercise 224	26
2.225	Exercise 225	26
2.226	Exercise 226	26
2.227	Exercise 227	26
2.228	Exercise 228	26
2.229	Exercise 229	26
2.230	Exercise 230	26
2.231	Exercise 231	26
2.232	Exercise 232	26
2.233	Exercise 233	26
2.234	Exercise 234	26
2.235	Exercise 235	26
2.236	Exercise 236	26
2.237	Exercise 237	26
2.238	Exercise 238	27
2.239	Exercise 239	27
2.240	Exercise 240	27
2.241	Exercise 241	27
2.242	Exercise 242	27
2.243	Exercise 243	27
2.244	Exercise 244	27
2.245	Exercise 245	27
2.246	Exercise 246	27
2.247	Exercise 247	27
2.248	Exercise 248	27
2.249	Exercise 249	27
2.250	Exercise 250	27
2.251	Exercise 251	27

Guide Note 1. Introducing programming environment & exercises

2.252	Exercise 252	27
2.253	Exercise 253	28
2.254	Exercise 254	28
2.255	Exercise 255	28
2.256	Exercise 256	28
2.257	Exercise 257	28
2.258	Exercise 258	28
2.259	Exercise 259	28
2.260	Exercise 260	28
2.261	Exercise 261	28
2.262	Exercise 262	28
2.263	Exercise 263	28
2.264	Exercise 264	28

Index of figures

Index of tables

Computer programming
Guide Note 1. Introducing
programming environment
& exercises

1 Installing programming environment

1.1 Python

- Recommended Version: Python 3.11 or later
- Installation Instructions:
 - Go to https://www.python.org/downloads/
 - Download the installer for your OS (Windows, macOS, Linux)
 - During installation on Windows, check the box that says "Add Python to PATH"
 - Follow the setup wizard to complete installation
- Test (Basic Check):
 - Open a terminal or command prompt
 - Type: python --version
 - You should see: Python 3.11.x
 - Then type: python → Enter the interactive shell
 - Run:

```
print("Python is ready!")
```

1.2 C/C++ (with GCC or MinGW)

- Recommended Compiler: GCC 13.x (Linux/macOS), or MinGW-w64 for Windows
- Installation Instructions:
 - Download MinGW-w64 from https://www.mingw-w64.org/
 - Install and add bin/ folder to the system PATH
- Test (Basic Check):
 - Open terminal or command prompt
 - Type: gcc --version or g++ --version
 - Create a test file test.c with:

```
#include <stdio.h>
int main() {
   printf("C environment is working!\n");
   return 0;
}
```

- Compile with: gcc test.c -o test → Run with: ./test
- You should see: C environment is working!

1.3 Java

- Recommended Version: Java SE 17 (LTS version)
- Installation Instructions:
 - Download from Oracle: https://www.oracle.com/java/technologies/javase-downloads.html
 - Install the JDK and ensure the JAVA_HOME environment variable is set

Computer programming Guide Note 1. Introducing programming environment & exercises

- Add the bin folder to your system PATH
- Test (Basic Check):
 - Open terminal or command prompt
 - Type: java -version → Should output java version "17.x"
 - Type: javac -version → Should output javac 17.x
 - Create a file Test.java:

```
public class Test {
    public static void main(String[] args) {
        System.out.println("Java is installed correctly!");
    }
}
```

- Compile: javac Test.java → Run: java Test
- · You should see: Java is installed correctly!

1.4 Matlab

- Recommended Version: MATLAB R2023b or later
- Installation Instructions:
 - Access the installer from https://www.mathworks.com/downloads/
 - You need a license (student, institutional, or trial)
 - Run the installer and follow on-screen instructions
 - On first launch, log in with your MathWorks account and activate the license
- Test (Basic Check):
 - Open MATLAB
 - In the Command Window, type:

```
disp('MATLAB is ready!')
```

You should see: MATLAB is ready!

Computer programming
Guide Note 1. Introducing
programming environment
& exercises

2 Exercises

2.1 Exercise 1

Write a script that prints the phrase "Hello, world!" on the screen. Use the appropriate display or output function.

2.2 Exercise 2

Create a program that displays the result of a basic arithmetic operation (addition, subtraction, multiplication, or division).

2.3 Exercise 3

Write a function that adds two numbers defined within the script and displays the result.

24 Exercise 4

Design a function that calculates the area of a circle given its radius.

2.5 Exercise 5

Create a program that determines whether a number is positive, negative, or zero.

2.6 Exercise 6

Write a function that returns the larger of two input numbers.

2.7 Exercise 7

Develop a program that calculates the average of three user-defined numbers.

2.8 Exercise 8

Create a function that receives a temperature in Celsius and returns its equivalent in Fahrenheit.

2.9 Exercise 9

Write a script that converts an amount in euros to dollars using a fixed exchange rate.

2.10 Exercise 10

Develop a program that reads two numbers and displays their sum, difference, and product.

2.11 Exercise 11

Create a program that calculates the area of a rectangle given base and height.

2.12 Exercise 12

Write a function that returns the volume of a cube given the side length.

2.13 Exercise 13

Design a function that checks whether a given year is a leap year.

Computer programming Guide Note 1. Introducing programming environment

2.14 Exercise 14

Create a script that calculates the Body Mass Index (BMI) from weight and height.

2.15 Exercise 15

Write a function that converts hours and minutes into total minutes.

2.16 Exercise 16

Create a program that converts minutes into hours and minutes (e.g., 130 min \rightarrow 2 h 10 min).

2.17 Exercise 17

Develop a script that determines the absolute value of a number.

2.18 Exercise 18

Write a function that returns the square of a number.

2.19 Exercise 19

Create a program that determines whether a number is divisible by 2 and by 3.

2.20 Exercise 20

Write a script that receives a grade (0–10) and returns a qualitative evaluation (e.g., fail, pass, excellent).

2.21 Exercise 21

Create a program that determines whether a character is a vowel or a consonant.

2.22 Exercise 22

Write a function that calculates the final price of a product after applying a discount.

2.23 Exercise 23

Develop a program that calculates the perimeter and area of a triangle given the lengths of its sides.

2.24 Exercise 24

Write a script that determines the maximum and minimum of three numbers.

2.25 Exercise 25

Create a function that calculates the factorial of a number using a loop.

2.26 Exercise 26

Write a function that calculates the sum of the first n natural numbers.

2 27 Exercise 27

Develop a program that returns the multiplication table of a given number from 1 to 10.

2 28 Exercise 28

Create a script that determines whether a number is prime.

Computer programming Guide Note 1. Introducing programming environment & exercises

2.29 Exercise 29

Write a function that calculates the nth Fibonacci number using iteration.

2.30 Exercise 30

Develop a program that returns all prime numbers up to a given limit.

2.31 Exercise 31

Write a function that calculates the average of a list of grades and determines if it passes.

2.32 Exercise 32

Create a program that counts how many even and odd numbers exist in a given list.

2.33 Exercise 33.

Write a function that sums all elements in a numeric vector.

2.34 Exercise 34

Develop a script that calculates the square root of a positive number.

2.35 Exercise 35

Create a function that displays the absolute values of all elements in a vector.

2.36 Exercise 36

Write a program that finds the position of the largest value in a vector.

2.37 Exercise 37

Create a function that removes all negative values from a numeric vector.

2 38 Exercise 38

Write a script that calculates the standard deviation of a list of numbers.

2.39 Exercise 39

Develop a function that returns the number of elements greater than a given threshold in a vector.

2.40 Exercise 40

Write a program that counts how many times a specific number appears in a list.

2.41 Exercise 41

Create a function that reverses the elements of a list or array.

2 42 Exercise 42

Write a script that multiplies each element in a vector by a scalar.

2.43 Exercise 43

Develop a program that returns the sum of the diagonal elements in a square matrix.

Computer programming
Guide Note 1. Introducing
programming environment
& exercises

2.44 Exercise 44

Create a function that identifies and returns all negative values in a matrix.

2.45 Exercise 45

Write a program that finds the maximum value in each row of a matrix.

2.46 Exercise 46

Create a function that generates a matrix with random integers between 1 and 100.

2.47 Exercise 47

Write a script that swaps two rows in a matrix.

2.48 Exercise 48

Develop a program that calculates the trace of a square matrix.

2.49 Exercise 49

Create a function that replaces all even numbers in a matrix with zero.

2.50 Exercise 50

Write a program that computes the sum of all elements in a two-dimensional array.

2.51 Exercise 51

Create a function that checks whether a square matrix is symmetric.

2.52 Exercise 52

Write a program that counts how many elements of a matrix are greater than its average.

2 53 Exercise 53

Develop a function that creates a matrix of size n × m filled with a given constant.

2.54 Exercise 54

Write a script that rotates a matrix 90 degrees clockwise.

2.55 Exercise 55

Create a program that calculates the average of the values on the main diagonal of a square matrix.

2.56 Exercise 56

Write a function that finds the row with the greatest sum in a matrix.

2 57 Exercise 57

Develop a script that replaces each value in a matrix with its absolute value.

2.58 Exercise 58

Create a function that returns the smallest value in each column of a matrix.

Computer programming Guide Note 1. Introducing programming environment & exercises

2.59 Exercise 59

Write a script that transposes a matrix.

2.60 Exercise 60

Create a program that generates a matrix of random integers and displays only the values above 50.

2.61 Exercise 61

Write a function that generates a random list of integers and returns the number of elements greater than a threshold.

2.62 Exercise 62

Create a script that generates 100 random numbers between 1 and 10 and counts how many times each value appears.

2.63 Exercise 63

Develop a function that simulates a lottery draw with unique random numbers.

2.64 Exercise 64

Write a script that simulates flipping a coin 1000 times and reports the number of heads and tails.

2.65 Exercise 65

Create a program that randomly selects a name from a list of participants.

2.66 Exercise 66

Write a function that generates a matrix of random floating-point numbers between 0 and 1.

2.67 Exercise 67

Develop a script that shuffles the elements of a given list randomly.

2.68 Exercise 68

Create a function that simulates a die roll and displays the result.

2.69 Exercise 69

Write a script that generates a random password of specified length using letters and digits.

2.70 Exercise 70

Develop a program that creates a list of n random integers and displays the list sorted in ascending order.

2.71 Exercise 71

Write a function that opens a text file and counts the number of characters, words, and lines.

2.72 Exercise 72

Create a script that saves a given list of numbers to a text file.

Computer programming Guide Note 1. Introducing programming environment & exercises

2.73 Exercise 73

Write a program that reads a file of numbers and calculates their average.

2.74 Exercise 74

Develop a function that writes the multiplication table of a given number to a file.

2.75 Exercise 75

Create a function that appends a line of text to the end of an existing file.

2.76 Exercise 76

Write a script that reads a text file and prints its content line by line.

2.77 Exercise 77

Create a function that deletes all empty lines from a text file.

2.78 Exercise 78

Write a script that reads data from a file and plots the values if they are numeric.

2.79 Exercise 79

Develop a program that checks whether a file exists before trying to read it.

2.80 Exercise 80

Create a script that copies the content of one text file into another.

2.81 Exercise 81

Write a function that counts how many vowels appear in a given sentence.

2 82 Exercise 82

Create a script that removes all whitespace from a given string.

2.83 Exercise 83

Develop a function that checks whether a string is a palindrome.

2.84 Exercise 84

Write a program that reverses a given text string.

2.85 Exercise 85

Create a script that replaces all spaces in a sentence with underscores.

2 86 Exercise 86

Write a function that returns the number of words in a given sentence.

2.87 Exercise 87

Develop a function that checks if a string contains only digits.

Computer programming Guide Note 1. Introducing programming environment & exercises

2.88 Exercise 88

Write a script that converts all letters in a sentence to uppercase.

2.89 Exercise 89

Create a function that returns the position of the first occurrence of a specific character in a string.

2.90 Exercise 90

Write a program that replaces every vowel in a sentence with an asterisk.

2.91 Exercise 91

Create a script that reads a string and prints its length.

2.92 Exercise 92

Write a function that removes all vowels from a text string.

2.93 Exercise 93

Develop a program that determines whether a password is valid (must contain upper/lowercase letters and a number).

2.94 Exercise 94

Create a script that joins two given strings with a hyphen.

2.95 Exercise 95

Write a function that counts how many times a given word appears in a paragraph.

2.96 Exercise 96

Create a program that compares two strings and returns whether they are identical.

2.97 Exercise 97

Develop a function that converts a string of digits into a list of integers.

2.98 Exercise 98

Write a script that counts how many words start with a specific letter in a sentence.

2.99 Exercise 99

Create a function that checks whether a text contains a specific word.

2.100 Exercise 100

Write a program that removes punctuation from a given text.

2.101 Exercise 101

Write a script that calculates the factorial of a number using recursion.

2 102 Exercise 102

Create a function that returns the first n even numbers.

Computer programming Guide Note 1. Introducing programming environment & exercises

2.103 Exercise 103

Develop a program that determines if a number is a perfect square.

2.104 Exercise 104

Write a function that returns the number of divisors of an integer.

2.105 Exercise 105

Create a script that returns the greatest common divisor (GCD) of two numbers.

2.106 Exercise 106

Write a program that determines the least common multiple (LCM) of two integers.

2.107 Exercise 107

Create a function that sums all the digits of a given number.

2.108 Exercise 108

Write a program that converts a decimal number into binary representation.

2.109 Exercise 109

Develop a function that converts a binary number into decimal.

2.110 Exercise 110

Write a script that returns the number of digits of a positive integer.

2.111 Exercise 111

Create a function that reverses the digits of a positive integer.

2 112 Exercise 112

Write a program that checks if a number is an Armstrong number.

2.113 Exercise 113

Create a script that calculates the sum of the series 1 + 1/2 + 1/3 + ... + 1/n.

2.114 Exercise 114

Write a function that calculates the sum of the squares of the first n natural numbers.

2.115 Exercise 115

Develop a program that evaluates a polynomial for a given value of x.

2 116 Exercise 116

Write a script that simulates a basic calculator (addition, subtraction, multiplication, division).

2.117 Exercise 117

Create a function that determines whether a given number is part of the Fibonacci sequence.

Computer programming Guide Note 1. Introducing programming environment & exercises

2.118 Exercise 118

Write a program that converts degrees to radians.

2.119 Exercise 119

Create a script that converts radians to degrees.

2.120 Exercise 120

Develop a function that generates a multiplication table up to 12×12.

2.121 Exercise 121.

Write a script that draws a right triangle using asterisks (*) based on a given height.

2.122 Exercise 122.

Create a function that returns the n-th triangular number.

2.123 Exercise 123.

Develop a program that determines whether three lengths can form a triangle.

2.124 Exercise 124.

Write a function that calculates the Euclidean distance between two points in 2D space.

2.125 Exercise 125.

Create a script that simulates a number guessing game.

2.126 Exercise 126.

Write a function that returns the sum of all prime numbers up to a given limit.

2 127 Exercise 127

Develop a program that simulates a simple stopwatch (start/stop and elapsed time).

2.128 Exercise 128.

Write a script that generates a list of Fibonacci numbers up to a limit.

2.129 Exercise 129.

Create a function that determines the quadrant of a point (x, y) on the Cartesian plane.

2.130 Exercise 130.

Write a program that calculates the angle between two vectors.

2 131 Exercise 131

Create a script that draws a square using asterisks of a given size.

2.132 Exercise 132.

Write a function that finds the second largest number in a list.

Computer programming Guide Note 1. Introducing programming environment & exercises

2.133 Exercise 133

Develop a program that computes the mean, median, and mode of a dataset.

2.134 Exercise 134.

Write a script that simulates rolling two dice 1000 times and analyzes the results.

2.135 Exercise 135

Create a function that determines if a list of numbers is sorted in ascending order.

2.136 Exercise 136

Write a program that calculates the harmonic mean of a set of values.

2.137 Exercise 137

Create a script that simulates a basic banking system (deposit, withdraw, balance).

2.138 Exercise 138

Write a function that converts a time in seconds to hours, minutes, and seconds.

2.139 Exercise 139

Develop a program that simulates a traffic light changing colors every few seconds.

2.140 Exercise 140

Write a script that displays a multiplication table from 1 to 10 in grid format.

2.141 Exercise 141

Write a function that generates the first n terms of a geometric sequence.

2 142 Exercise 142

Create a script that checks if a number is both prime and a palindrome.

2.143 Exercise 143

Develop a program that counts how many perfect squares are less than a given number.

2.144 Exercise 144

Write a function that returns the binary representation of a number as a string.

2.145 Exercise 145

Create a program that calculates the dot product of two vectors.

2 146 Exercise 146

Write a script that replaces negative values in a matrix with zero.

2.147 Exercise 147

Develop a function that returns the cumulative sum of elements in a list.

Computer programming Guide Note 1. Introducing programming environment & exercises

2.148 Exercise 148

Create a script that generates a matrix with alternating 1s and 0s.

2.149 Exercise 149

Write a program that creates a spiral matrix of size $n \times n$.

2.150 Exercise 150

Create a function that validates a date (day, month, year) is correct.

2.151 Exercise 151

Write a script that simulates a basic login system with user verification.

2.152 Exercise 152

Develop a function that checks if a matrix is upper triangular.

2.153 Exercise 153

Create a program that multiplies two matrices of compatible sizes.

2.154 Exercise 154

Write a script that counts how many values in a matrix are divisible by 5.

2.155 Exercise 155

Create a function that determines the rank of a matrix.

2.156 Exercise 156

Write a program that swaps two columns in a matrix.

2 157 Exercise 157

Develop a script that sorts each row of a matrix in ascending order.

2.158 Exercise 158

Write a function that finds all local maxima in a matrix.

2.159 Exercise 159

Create a program that fills a matrix with random values and highlights the diagonal.

2.160 Exercise 160

Write a script that rotates a square matrix 180 degrees.

2 161 Exercise 161

Write a script that determines if a given matrix is a magic square.

2.162 Exercise 162

Create a function that checks whether two strings are anagrams.

Computer programming Guide Note 1. Introducing programming environment & exercises

2.163 Exercise 163

Develop a program that replaces each digit in a number with its word equivalent (e.g., $123 \rightarrow$ one two three).

2.164 Exercise 164

Write a function that generates a chessboard pattern using 0s and 1s.

2.165 Exercise 165

Create a script that simulates the Rock, Paper, Scissors game between two players.

2.166 Exercise 166

Write a program that simulates the Monty Hall problem and displays statistics.

2.167 Exercise 167

Develop a script that creates an hourglass shape using asterisks with a given height.

2.168 Exercise 168

Write a function that checks if a square matrix is diagonally dominant.

2.169 Exercise 169

Create a script that counts how many prime numbers are present in a matrix.

2.170 Exercise 170

Write a function that calculates the determinant of a 2×2 or 3×3 matrix.

2.171 Exercise 171

Create a program that implements a basic Caesar cipher for encrypting text.

2.172 Exercise 172

Write a script that simulates a basic stopwatch using system clock functions.

2.173 Exercise 173

Develop a function that checks if a list contains duplicate elements.

2.174 Exercise 174

Write a program that finds the intersection and union of two sets.

2.175 Exercise 175

Create a function that finds the longest word in a sentence.

2.176 Exercise 176

Write a script that calculates the day of the week for a given date.

2 177 Exercise 177

Create a program that simulates a basic voting system with multiple candidates.

Computer programming
Guide Note 1. Introducing
programming environment
& exercises

2.178 Exercise 178

Write a function that detects whether a number is a palindrome in binary form.

2.179 Exercise 179

Develop a script that sorts a list of words alphabetically.

2.180 Exercise 180

Create a program that generates random math problems and checks the user's answers.

2.181 Exercise 181

Write a function that returns the most frequent character in a text.

2.182 Exercise 182

Create a script that capitalizes the first letter of every word in a sentence.

2.183 Exercise 183

Develop a program that calculates the difference in days between two dates.

2.184 Exercise 184

Write a function that checks whether a string is a valid email address.

2.185 Exercise 185

Create a script that removes duplicate words from a sentence.

2.186 Exercise 186

Write a program that simulates a basic shopping cart system with item prices and quantities.

2 187 Exercise 187

Develop a function that determines whether a matrix contains only binary values (0 or 1).

2.188 Exercise 188

Write a script that creates a visual histogram of a list of numbers using asterisks.

2.189 Exercise 189

Create a function that extracts all digits from a mixed alphanumeric string.

2.190 Exercise 190

Write a program that encrypts a message by shifting characters according to a custom key.

2 191 Exercise 191

Create a script that determines whether a given year is a century year.

2.192 Exercise 192

Write a function that returns the smallest and largest elements in a numeric list.

Computer programming
Guide Note 1. Introducing
programming environment
& exercises

2.193 Exercise 193

Develop a program that checks if a given point lies inside a circle with given center and radius.

2.194 Exercise 194

Write a script that generates a square pattern of alternating characters (e.g., X and O).

2.195 Exercise 195

Create a function that validates a password based on length and character criteria.

2.196 Exercise 196

Write a program that computes the moving average of a list of numbers.

2.197 Exercise 197

Create a script that extracts all uppercase words from a block of text.

2.198 Exercise 198

Write a function that removes consecutive duplicate characters from a string.

2.199 Exercise 199

Develop a script that detects and corrects misspelled words from a given list.

2.200 Exercise 200

Create a program that simulates a queue using a list or array.

2.201 Exercise 201

Write a function that computes the number of combinations (n choose k).

2 202 Exercise 202

Create a script that counts the frequency of each letter in a given text.

2.203 Exercise 203

Develop a program that splits a text into sentences based on punctuation.

2.204 Exercise 204

Write a function that generates a list of prime numbers using the Sieve of Eratosthenes.

2.205 Exercise 205

Create a script that simulates a parking lot management system.

2 206 Exercise 206

Write a program that analyzes the number of occurrences of each digit in a given number.

2.207 Exercise 207

Create a function that computes the Hamming distance between two strings.

Computer programming Guide Note 1. Introducing programming environment & exercises

2.208 Exercise 208

Write a script that converts a hexadecimal number to its decimal equivalent.

2.209 Exercise 209

Develop a function that computes the power of a number without using built-in exponentiation.

2.210 Exercise 210

Write a program that extracts the domain name from an email address.

2.211 Exercise 211

Create a script that finds all palindromic words in a sentence.

2.212 Exercise 212

Write a function that compresses a string using a simple run-length encoding.

2.213 Exercise 213

Develop a program that validates a credit card number using the Luhn algorithm.

2.214 Exercise 214

Write a script that detects the longest increasing subsequence in a list.

2.215 Exercise 215

Create a function that rotates a string by a given number of positions.

2.216 Exercise 216

Write a program that simulates a basic ticketing system for an event.

2 217 Exercise 217

Create a script that visualizes a list of values using a horizontal bar chart made of characters.

2.218 Exercise 218

Write a function that splits a string into substrings of a fixed length.

2.219 Exercise 219

Develop a program that returns the sum of ASCII values of the characters in a string.

2.220 Exercise 220

Create a script that computes the greatest difference between any two elements in a list.

2 221 Exercise 221

Write a function that computes the average word length in a given sentence.

2.222 Exercise 222

Create a script that finds the longest substring without repeating characters.

Computer programming Guide Note 1. Introducing programming environment & exercises

2.223 Exercise 223

Develop a program that validates an IP address format (IPv4).

2.224 Exercise 224

Write a function that generates a random hexadecimal color code.

2.225 Exercise 225

Create a script that simulates a random walk on a grid.

2.226 Exercise 226

Write a program that analyzes a paragraph and outputs word frequency in descending order.

2.227 Exercise 227

Create a function that detects whether a string contains balanced parentheses.

2.228 Exercise 228

Write a script that simulates a typing effect by printing one character at a time.

2.229 Exercise 229

Develop a function that finds the longest common prefix among a list of strings.

2.230 Exercise 230

Write a program that calculates the checksum digit of an ISBN-10 code.

2.231 Exercise 231

Create a script that visualizes numeric data as a vertical bar chart using characters.

2 232 Exercise 232

Write a function that generates an acronym from a given phrase.

2.233 Exercise 233

Develop a program that sorts a list of dates in chronological order.

2.234 Exercise 234

Write a script that converts a text to Pig Latin.

2.235 Exercise 235

Create a function that evaluates if a matrix is sparse (most elements are zero).

2 236 Exercise 236

Write a program that simulates Conway's Game of Life on a small grid.

2.237 Exercise 237

Create a script that encodes and decodes text using a simple substitution cipher.

Computer programming
Guide Note 1. Introducing
programming environment
& exercises

2.238 Exercise 238

Write a function that formats a number with commas as thousand separators.

2.239 Exercise 239

Develop a program that checks if a string follows a specific pattern (e.g., 'a*b*a').

2.240 Exercise 240

Write a script that highlights specific words in a sentence by surrounding them with asterisks.

2.241 Exercise 241

Write a function that finds all numbers in a list that appear more than once.

2.242 Exercise 242

Create a script that filters out all stopwords from a sentence.

2.243 Exercise 243

Develop a program that visualizes prime numbers on a spiral matrix.

2.244 Exercise 244

Write a function that removes HTML tags from a string.

2.245 Exercise 245

Create a script that calculates the entropy of a text string.

2.246 Exercise 246

Write a program that converts text into Morse code and vice versa.

2 247 Exercise 247

Develop a function that finds the longest palindromic substring in a given string.

2.248 Exercise 248

Write a script that generates a simple QR code from a string.

2.249 Exercise 249

Create a program that identifies the language of a short text snippet (basic keyword matching).

2.250 Exercise 250

Write a function that generates a histogram of letter frequencies from a text file.

2 251 Exercise 251

Create a script that formats a list of numbers into a nicely aligned table.

2.252 Exercise 252

Write a program that extracts email addresses from a block of text.

Computer programming Guide Note 1. Introducing programming environment & exercises

2.253 Exercise 253

Develop a function that computes Levenshtein distance between two strings.

2.254 Exercise 254

Write a script that parses a CSV file and outputs the average of numeric columns.

2.255 Exercise 255

Create a program that simulates an elevator system with multiple floors and buttons.

2.256 Exercise 256

Write a function that plots a sine wave using sampled points.

2.257 Exercise 257

Develop a script that generates and displays a calendar for a given month and year.

2.258 Exercise 258

Write a program that simulates a digital clock updating in real time.

2.259 Exercise 259

Create a function that validates the syntax of a simple arithmetic expression.

2.260 Exercise 260

Write a script that compares the performance of different sorting algorithms.

2.261 Exercise 261

Create a program that records user keystrokes and analyzes typing speed.

2.262 Exercise 262

Write a function that determines if a matrix is orthogonal.

2.263 Exercise 263

Develop a script that generates a maze and solves it using backtracking.

2.264 Exercise 264

Write a program that creates a heatmap from a matrix of values.